
About GrADS Station Data
This section describes the structure of station data files, how to create them, and how to
instruct GrADS to interpret them properly. Please refer to the companion section on
Using Station Data for information about the GrADS commands and functions that are
available for analyzing and displaying station data. Here are some quick links for
skipping through this section:

• Structure of a Station Data File
• Creating a Station Data File
• Station Data Descriptor File
• The STNMAP Utility

Structure of a Station Data File
Station data are written to a binary file one report at a time. Groups of station reports are
ordered within the file according to the time interval. The time interval for a set of upper
air soundings might be 12 hours, and the time interval for a set of surface observations
might be 1 hour.

Variables within each report are split into two categories: surface and level-dependent.
Surface variables are reported at most once per report, and level-dependent variable are
reported at multiple pressure levels within each report.

Each station report in a binary station data file has the following structure:

• A header which provides information about the location of the station
• Surface variables, if any
• Level dependent variables, if any

The header is described by the following C language data structure:

struct reportheader {
 char id[8]; /* Station ID */
 float lat; /* Latitude of Station */
 float lon; /* Longitude of Station */
 float t; /* Time in grid-relative units */
 int nlev; /* Number of data groups following the header
*/
 int flag; /* Level independent var set flag */
};

A detailed description of each header entry follows:

id

The station ID uniquely identifies the station. It can be 1 to 7 characters
long and may be assigned arbitrarily; ie. the stations could be numbered in
some arbitrary order.

lat, lon

The location of the station, given in world coordinates (latitude and
longitude).

t

The time of this report, in grid-relative units. This refers to the way the
stations are grouped in time. For example, if you are working with surface
airways reports, you would probably have a time grouping interval of one
hour. If you wanted to treat the report times of each report as being exactly
on the hour, you would set t to 0.0. If the report was for 12:15pm, and you
were writing the time group for 12pm, you would set t to be 0.25. Thus, t
would typically have the range of - 0.5 to 0.5.

nlev

Number of data groups following the header. This is the count of the one
surface group, if present, plus the number of level dependent groups. Is set
to zero to mark the end of a time group in the file.

flag

If set to 0, there are no surface variables following the header. If set to 1,
then there are surface variables following the header.

The surface variable data (if present) are written to file following the header. Surface
variables are written out as floating point numbers in the order they are listed in the data
descriptor file. Each of the surface variables must be written -- missing variables should
contain the missing data value specified in the data descriptor file. The group of surface
variable data must be the same size for each report in the file.

The level-dependent variables are written to file following the surface variables as
follows:

level -- a floating point value giving the Z dimension in world coordinates
for this level.
variables -- The level-dependent variables for this level.

Each level dependent group must have all the level dependent variables present, even if
they are filled with the missing data value. The group of level dependent variable data
must be the same size for all levels and all reports in the file.

After all the reports for one time grouping have been written, a special header (with no
data groups -- nlev set to zero) is written to indicate the end of the time group. The next
time group may then start immediately after. A time group with no reports would still
contain the time group terminator header record (ie, two terminators in a row).

Creating a Station Data File
GrADS station data files must be written out in the structure outlined in the previous
section. Examples of C and FORTRAN programs to create station data sets are provided
below.

Let's say you have a data set with monthly rainfall:

Year Month Stid Lat Lon Rainfall
1980 1 QQQ 34.3 -85.5 123.3
1980 1 RRR 44.2 -84.5 87.1
1980 1 SSS 22.4 -83.5 412.8
1980 1 TTT 33.4 -82.5 23.3
1980 2 QQQ 34.3 -85.5 145.1
1980 2 RRR 44.2 -84.5 871.4
1980 2 SSS 22.4 -83.5 223.1
1980 2 TTT 33.4 -82.5 45.5

A sample DEC FORTRAN program to write this data set in GrADS format is given
below. Note that the OPEN statement is set to write a stream data set. This option may
not not available with every compiler. If your program writes out data in sequential
format, you must add an "OPTIONS sequential" entry to your GrADS data descriptor
file.

 CHARACTER*8 STID
 OPEN (8,NAME='rain.ch')
 OPEN (10,NAME='rain.dat',FORM='UNFORMATTED',RECORDTYPE='STREAM')
 IFLAG = 0
C Read and Write
10 READ (8,9000,END=90) IYEAR,IMONTH,STID,RLAT,RLON,RVAL
9000 FORMAT (I4,3X,I2,2X,A8,3F8.1)
 IF (IFLAG.EQ.0) THEN
 IFLAG = 1
 IYROLD = IYEAR
 IMNOLD = IMONTH
 ENDIF
C If new time group, write time group terminator.
C Assuming no empty time groups.
 IF (IYROLD.NE.IYEAR.OR.IMNOLD.NE.IMONTH) THEN
 NLEV = 0
 WRITE (10) STID,RLAT,RLON,TIM,NLEV,NFLAG
 ENDIF
 IYROLD = IYEAR
 IMNOLD = IMONTH
C Write this report
 TIM = 0.0
 NLEV = 1

 NFLAG = 1
 WRITE (10) STID,RLAT,RLON,TIM,NLEV,NFLAG
 WRITE (10) RVAL
 GO TO 10
C On end of file write last time group terminator.
90 CONTINUE
 NLEV = 0
 WRITE (10) STID,RLAT,RLON,TIM,NLEV,NFLAG
 STOP
 END

An equivalent C program might be:

#include <stdio.h>
/* Structure that describes a report header in a stn file */
struct rpthdr {
 char id[8]; /* Station ID */
 float lat; /* Latitude of Station */
 float lon; /* Longitude of Station */
 float t; /* Time in grid-relative units */
 int nlev; /* Number of levels following */
 int flag; /* Level independent var set flag */
} hdr;

main ()
{
 FILE *ifile, *ofile;
 char rec[80];
 int flag,year,month,yrsav,mnsav,i;
 float val;

/* Open files */
 ifile = fopen ("rain.ch","r");
 ofile = fopen ("rain.dat","wb");
 if (ifile==NULL || ofile==NULL) {
 printf("Error opening files\n");
 return;
 }

/* Read, write loop */
 flag = 1;
 while (fgets(rec,79,ifile)!=NULL) {
 /* Format conversion */
 sscanf (rec,"%i %i",&year,&month);
 sscanf (rec+20," %g %g %g",&hdr.lat,&hdr.lon,&val);
 for (i=0; i<8; i++) hdr.id[i] = rec[i+11];
 /* Time group terminator if needed */
 if (flag) {
 yrsav = year;
 mnsav = month;
 flag = 0;
 }
 if (yrsav!=year || mnsav!=month) {
 hdr.nlev = 0;
 fwrite(&hdr,sizeof(struct rpthdr), 1, ofile);

 }
 yrsav = year;
 mnsav = month;
 /* Write this report */
 hdr.nlev = 1;
 hdr.flag = 1;
 hdr.t = 0.0;
 fwrite (&hdr,sizeof(struct rpthdr), 1, ofile);
 fwrite (&val,sizeof(float), 1, ofile);
 }
 hdr.nlev = 0;
 fwrite (&hdr,sizeof(struct rpthdr), 1, ofile);
}

Station Data Descriptor File
After creating a binary file containing your station data, you must write a station data
descriptor file so GrADS knows how to interpret the binary data file. The format for the
data descriptor file for station data is similar to the format for a gridded data set, but there
are a few differences as well as additional entries that are unique to station data descriptor
files. These differences are outlined below. For further information on all the entries of a
descriptor file, consult the secion of the User's Guide on Elements of a GrADS Data
Descriptor File.

Here is an example of a station data descriptor file. Remember that the variables must be
listed in the same order as they were written to the binary file.

DSET ^station_data_sample.dat
DTYPE station
STNMAP station_data_sample.map
UNDEF -999.0
TITLE Station Data Sample
TDEF 10 linear 12z18jan1992 12hr
VARS 11
ps 0 99 Surface Pressure
ts 0 99 Surface Temperature
ds 0 99 Surface Dewpoint Temperature
us 0 99 Surface U-Wind
vs 0 99 Surface V-Wind
elev 0 99 Elevation of Station
z 1 99 Height
t 1 99 Temperature
d 1 99 Dewpoint Temperature
u 1 99 U-Wind
v 1 99 V-Wind
ENDVARS

Note the following differences between this descriptor file and a gridded data descriptor
file:

DTYPE station

This entry identifies the data file as station data.

STNMAP filename

This entry identifies the file name of the station map file created by the
stnmap utility.

XDEF, YDEF, and ZDEF

These entries are not included in a station data control file.

TDEF

This entry gives the number of the time groups in the file, the time stamp
for the first group, and the interval between time groups.

VARS

The surface variables are listed first, and contain a "0" in the levs field.
Level-dependent variables are listed after the surface variables, and
contain a "1" in the levs field.

STNMAP Utility

Once the station data set has been created and the descriptor file has been written, the
final step is to create the station map file by running the stnmap utility. This utility is
executed externally from the command line, not from within GrADs. stnmap writes out
information that allows GrADS to access the station report data more efficiently. The
output from stnmap is called the station map file and its name is identified in the STNMAP
entry of the data descriptor file. stnmap will prompt the user for the name of the data
descriptor file, or it can be specified as an input argument on the command line. Station
map files must be created on the machine where they are to be used. Consult the
reference page for more information.

If you change the station data file, perhaps by appending another time group, then you
will also have to change the descriptor file to reflect the changes and then rerun the
stnmap utility.

